Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 527(16): 2703-2729, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30980526

RESUMEN

The highly mobile chin appendage of Gnathonemus petersii, the Schnauzenorgan, is used to actively probe the environment and is known to be a fovea of the electrosensory system. It receives an important innervation from both the trigeminal sensory and motor systems. However, little is known about the premotor control pathways that coordinate the movements of the Schnauzenorgan, or about central pathways originating from the trigeminal motor nucleus. The present study focuses on the central connections of the trigeminal motor system to elucidate premotor centers controlling Schnauzenorgan movements, with particular interest in the possible connections between the electrosensory and trigeminal systems. Neurotracer injections into the trigeminal motor nucleus revealed bilateral, reciprocal connections between the two trigeminal motor nuclei and between the trigeminal sensory and motor nuclei by bilateral labeling of cells and terminals. Prominent afferent input to the trigeminal motor nucleus originates from the nucleus lateralis valvulae, the nucleus dorsalis mesencephali, the cerebellar corpus C1, the reticular formation, and the Raphe nuclei. Retrogradely labeled cells were also observed in the central pretectal nucleus, the dorsal anterior pretectal nucleus, the tectum, the ventroposterior nucleus of the torus semicircularis, the gustatory sensory and motor nuclei, and in the hypothalamus. Labeled terminals, but not cell bodies, were observed in the nucleus lateralis valvulae and the reticular formation. No direct connections were found between the electrosensory system and the V motor nucleus but the central connections identified would provide several multisynaptic pathways linking these two systems, including possible efference copy and corollary discharge mechanisms.


Asunto(s)
Pez Eléctrico/anatomía & histología , Núcleo Motor del Nervio Trigémino/citología , Vías Aferentes/citología , Animales , Cerebelo/citología , Vías Eferentes/citología , Interneuronas/citología , Técnicas de Trazados de Vías Neuroanatómicas , Nervio Trigémino/citología
2.
Brain Struct Funct ; 223(5): 2259-2268, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29460053

RESUMEN

The neurons in the trigeminal mesencephalic nucleus (Vmes) innervate jaw-closing muscle spindles and periodontal ligaments, and play a crucial role in the regulation of jaw movements. Recently, it was shown that many boutons that form synapses on them are immunopositive for glycine (Gly+), suggesting that these neurons receive glycinergic input. Information about the glycine receptors that mediate this input is needed to help understand the role of glycine in controlling Vmes neuron excitability. For this, we investigated the expression of glycine receptor subunit alpha 3 (GlyRα3) and gephyrin in neurons in Vmes and the trigeminal motor nucleus (Vmo), and the Gly+ boutons that contact them by light- and electron-microscopic immunocytochemistry and quantitative ultrastructural analysis. The somata of the Vmes neurons were immunostained for GlyRα3, but not gephyrin, indicating expression of homomeric GlyR. The immunostaining for GlyRα3 was localized away from the synapses in the Vmes neuron somata, in contrast to the Vmo neurons, where the staining for GlyRα3 and gephyrin were localized at the subsynaptic zones in somata and dendrites. Additionally, the ultrastructural determinants of synaptic strength, bouton volume, mitochondrial volume, and active zone area, were significantly smaller in Gly+ boutons on the Vmes neurons than in those on the Vmo neurons. These findings support the notion that the Vmes neurons receive glycinergic input via putative extrasynaptic homomeric glycine receptors, likely mediating a slow, tonic modulation of the Vmes neuron excitability.


Asunto(s)
Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Receptores de Glicina/metabolismo , Núcleo Motor del Nervio Trigémino/citología , Animales , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Dendritas/ultraestructura , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Microscopía Confocal , Microscopía Inmunoelectrónica , Neuronas/ultraestructura , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/ultraestructura , Núcleo Motor del Nervio Trigémino/diagnóstico por imagen
3.
Neuroscience ; 358: 211-226, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28673717

RESUMEN

Phox2b encodes a paired-like homeodomain-containing transcription factor essential for development of the autonomic nervous system. Phox2b-expressing (Phox2b+) neurons are present in the reticular formation dorsal to the trigeminal motor nucleus (RdV) as well as the nucleus of the solitary tract and parafacial respiratory group. However, the nature of Phox2b+ RdV neurons is still unclear. We investigated the physiological and morphological properties of Phox2b+ RdV neurons using postnatal day 2-7 transgenic rats expressing yellow fluorescent protein under the control of Phox2b. Almost all of Phox2b+ RdV neurons were glutamatergic, whereas Phox2b-negative (Phox2b-) RdV neurons consisted of a few glutamatergic, many GABAergic, and many glycinergic neurons. The majority (48/56) of Phox2b+ neurons showed low-frequency firing (LF), while most of Phox2b- neurons (35/42) exhibited high-frequency firing (HF) in response to intracellularly injected currents. All, but one, Phox2b+ neurons (55/56) did not fire spontaneously, whereas three-fourths of the Phox2b- neurons (31/42) were spontaneously active. K+ channel and persistent Na+ current blockers affected the firing of LF and HF neurons. The majority of Phox2b+ (35/46) and half of the Phox2b- neurons (19/40) did not respond to stimulations of the mesencephalic trigeminal nucleus, the trigeminal tract, and the principal sensory trigeminal nucleus. Biocytin labeling revealed that about half of the Phox2b+ (5/12) and Phox2b- RdV neurons (5/10) send their axons to the trigeminal motor nucleus. These results suggest that Phox2b+ RdV neurons have distinct neurotransmitter phenotypes and firing properties from Phox2b- RdV neurons and might play important roles in feeding-related functions including suckling and possibly mastication.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Vías Nerviosas/fisiología , Neuronas/metabolismo , Formación Reticular/citología , Factores de Transcripción/metabolismo , Núcleo Motor del Nervio Trigémino/citología , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Regulación del Desarrollo de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas de Homeodominio/genética , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Transgénicas , Factores de Transcripción/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
4.
Brain Struct Funct ; 222(7): 3231-3239, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28326439

RESUMEN

Gamma-motoneurons (γMNs) play a crucial role in regulating isometric muscle contraction. The slow jaw-closing during mastication is one of the most functional isometric contractions, which is developed by the rank-order recruitment of alpha-motoneurons (αMNs) in a manner that reflects the size distribution of αMNs. In a mouse spinal motor nucleus, there are two populations of small and large MNs; the former was identified as a population of γMNs based on the positive expression of the transcription factor estrogen-related receptor 3 (Err3) and negative expression of the neuronal DNA-binding protein NeuN, and the latter as that of αMNs based on the opposite pattern of immunoreactivity. However, the differential identification of αMNs and γMNs in the trigeminal motor nucleus (TMN) remains an assumption based on the size of cell bodies that were retrogradely stained with HRP. We here examined the size distributions of αMNs and γMNs in the dorsolateral TMN (dl-TMN) by performing immunohistochemistry using anti-Err3 and anti-NeuN antibodies. The dl-TMN was identified by immunopositivity for vesicular glutamate transporter-1. Immunostaining for choline acetyltransferase and Err3/NeuN revealed that the dl-TMN is composed of 65% αMNs and 35% γMNs. The size distribution of αMNs was bimodal, while that of γMNs was almost the same as that of the population of small αMNs, suggesting the presence of αMNs as small as γMNs. Consistent with the size concept of motor units, the presence of smaller jaw-closing αMNs was coherent with the inclusion of jaw-closing muscle fibers with smaller diameters compared to limb muscle fibers.


Asunto(s)
Neuronas Motoras/clasificación , Neuronas Motoras/fisiología , Núcleo Motor del Nervio Trigémino/citología , Animales , Recuento de Células/métodos , Colina O-Acetiltransferasa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Masculino , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
5.
Neuroreport ; 27(17): 1274-1280, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27755281

RESUMEN

Cell bodies of trigeminal mesencephalic nucleus (Vmes) neurons are located within the central nervous system, and therefore, peripheral as well as central acidosis can modulate the excitability of Vmes neurons. Here, we report the effect of acidic pH on voltage-gated Na channels in acutely isolated rat Vmes neurons using a conventional whole-cell patch clamp technique. Acidic pH (pH 6.0) slightly but significantly shifted both the activation and steady-state fast inactivation relationships toward depolarized potentials. However, acidic pH (pH 6.0) had a minor effect on the inactivation kinetics of voltage-gated Na channels. Less sensitivity of voltage-gated Na channels to acidic pH may allow Vmes neurons to transduce the precise proprioceptive information even under acidic pH conditions.


Asunto(s)
Ácidos , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Canales de Sodio/fisiología , Núcleo Motor del Nervio Trigémino/citología , Animales , Animales Recién Nacidos , Biofisica , Cloruro de Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Estimulación Eléctrica , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología
6.
eNeuro ; 3(3)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27482536

RESUMEN

Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 µm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 µm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.


Asunto(s)
Neuronas Motoras/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/metabolismo , Núcleo Motor del Nervio Trigémino/metabolismo , Animales , Tamaño de la Célula , GMP Cíclico/metabolismo , Dendritas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Potenciales de la Membrana/fisiología , Ratones , Neuronas Motoras/citología , Proteínas del Tejido Nervioso , Oocitos , Canales de Potasio/genética , Canales de Potasio de Dominio Poro en Tándem/genética , ARN Mensajero/metabolismo , Ratas Wistar , Técnicas de Cultivo de Tejidos , Núcleo Motor del Nervio Trigémino/citología , Xenopus laevis
7.
J Comp Neurol ; 524(4): 738-58, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26224546

RESUMEN

Neurons in the trigeminal (Mo5), facial (Mo7), ambiguus (Amb), and hypoglossal (Mo12) motor nuclei innervate jaw, facial, pharynx/larynx/esophagus, and tongue muscles, respectively. They are essential for movements subserving feeding, exploration of the environment, and social communication. These neurons are largely controlled by sensory afferents and premotor neurons of the reticular formation, where central pattern generator circuits controlling orofacial movements are located. To provide a description of the orofacial nuclei of the adult mouse and to ascertain the influence of excitatory and inhibitory afferents upon them, we used stereology to estimate the number of motoneurons as well as of varicosities immunopositive for glutamate (VGluT1+, VGluT2+) and GABA/glycine (known as VIAAT+ or VGAT+) vesicular transporters in the Mo5, Mo7, Amb, and Mo12. Mo5, Mo7, Amb, and Mo12 contain ∼1,000, ∼3,000, ∼600, and ∼1,700 cells, respectively. VGluT1+, VGluT2+, and VIAAT+ varicosities respectively represent: 28%, 41%, and 31% in Mo5; 2%, 49%, and 49% in Mo7; 12%, 42%, and 46% in Amb; and 4%, 54%, and 42% in Mo12. The Mo5 jaw-closing subdivision shows the highest VGluT1+ innervation. Noticeably, the VGluT2+ and VIAAT+ varicosity density in Mo7 is 5-fold higher than in Mo5 and 10-fold higher than in Amb and Mo12. The high density of terminals in Mo7 likely reflects the convergence and integration of numerous inputs to motoneurons subserving the wide range of complex behaviors to which this nucleus contributes. Also, somatic versus neuropil location of varicosities suggests that most of these afferents are integrated in the dendritic trees of Mo7 neurons.


Asunto(s)
Cara/inervación , Núcleo Motor del Nervio Facial/citología , Bulbo Raquídeo/citología , Neuronas Motoras/citología , Boca/inervación , Núcleo Motor del Nervio Trigémino/citología , Animales , Recuento de Células , Núcleo Motor del Nervio Facial/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Nervio Hipogloso/citología , Nervio Hipogloso/metabolismo , Inmunohistoquímica , Masculino , Bulbo Raquídeo/metabolismo , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Inhibición Neural/fisiología , Tamaño de los Órganos , Núcleo Motor del Nervio Trigémino/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ácido gamma-Aminobutírico/metabolismo
8.
J Neurophysiol ; 111(9): 1770-82, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24501266

RESUMEN

The electrophysiological and morphological characteristics of premotor neurons in the supratrigeminal region (SupV) targeting the trigeminal motor nucleus (MoV) were examined in neonatal rat brain stem slice preparations with Ca(2+) imaging, whole cell recordings, and intracellular biocytin labeling. First, we screened SupV neurons that showed a rapid rise in intracellular free Ca(2+) concentration ([Ca(2+)]i) after single-pulse electrical stimulation of the ipsilateral MoV. Subsequent whole cell recordings were generated from the screened SupV neurons, and their antidromic responses to MoV stimulation were confirmed. We divided the antidromically activated premotor neurons into two groups according to their discharge patterns during the steady state in response to 1-s depolarizing current pulses: those firing at a frequency higher (HF neurons, n = 19) or lower (LF neurons, n = 17) than 33 Hz. In addition, HF neurons had a narrower action potential and a larger afterhyperpolarization than LF neurons. Intracellular labeling revealed that the axons of all HF neurons (6/6) and half of the LF neurons (4/9) entered the MoV from its dorsomedial aspect, whereas the axons of the remaining LF neurons (5/9) entered the MoV from its dorsolateral aspect. Furthermore, the dendrites of three HF neurons penetrated into the principal sensory trigeminal nucleus (Vp), whereas the dendrites of all LF neurons were confined within the SupV. These results suggest that the types of SupV premotor neurons targeting the MoV with different firing properties have different dendritic and axonal morphologies, and these SupV neuron classes may play unique roles in diverse oral motor behaviors, such as suckling and mastication.


Asunto(s)
Potenciales de Acción , Neuronas/fisiología , Núcleo Motor del Nervio Trigémino/fisiología , Animales , Señalización del Calcio , Neuronas/citología , Neuronas/metabolismo , Ratas , Ratas Wistar , Núcleo Motor del Nervio Trigémino/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...